Exercise 19

The quantity of charge Q in coulombs (C) that has passed through a point in a wire up to time t (measured in seconds) is given by $Q(t)=t^{3}-2 t^{2}+6 t+2$. Find the current when (a) $t=0.5 \mathrm{~s}$ and (b) $t=1 \mathrm{~s}$. [See Example 3. The unit of current is an ampere ($1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}$).] At what time is the current lowest?

Solution

Take the derivative of $Q(t)$ to get the current in the wire.

$$
\begin{aligned}
\frac{d Q}{d t} & =\frac{d}{d t}\left(t^{3}-2 t^{2}+6 t+2\right) \\
& =3 t^{2}-4 t+6
\end{aligned}
$$

The current when $t=0.5 \mathrm{~s}$ is

$$
\left.\frac{d Q}{d t}\right|_{t=0.5}=3(0.5)^{2}-4(0.5)+6=4.75 \mathrm{C} / \mathrm{s} .
$$

The current when $t=1 \mathrm{~s}$ is

$$
\left.\frac{d Q}{d t}\right|_{t=1}=3(1)^{2}-4(1)+6=5 \mathrm{C} / \mathrm{s} .
$$

To find when the current is lowest, take the derivative of the current,

$$
\frac{d^{2} Q}{d t^{2}}=\frac{d}{d t}\left(3 t^{2}-4 t+6\right)=6 t-4
$$

set it equal to zero,

$$
6 t-4=0,
$$

and solve for t.

$$
t=\frac{2}{3}
$$

